Probability and Statistics I

STAT 3600 - Fall 2021

Le Chen
lzc0090@auburn.edu

Last updated on
July 4, 2021

Auburn University
 Auburn AL

Chapter 4. Bivariate Distributions

Chapter 4. Bivariate Distributions

§ 4.1 Bivariate Distributions of the Discrete Type
§ 4.2 The Correlation Coefficient
§ 4.3 Conditional Distributions
§ 4.4 Bivariate Distributions of the Continuous Type
§ 4.5 The Bivariate Normal Distribution

Definition 4.2-1 The covariance of X and Y, denoted by $\operatorname{Cov}(X, Y)$ or $\sigma_{X Y}$, is defined by

$$
\operatorname{Cov}(X, Y)=\sigma_{X Y}=\mathbb{E}\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]=\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y)
$$

If $\operatorname{Cov}(X, Y)=0$, then we say that X and Y are uncorrelated. X and Y are uncorrelated if and only if

$$
\mathbb{E}(X Y)=\mathbb{E}(X) \mathbb{E}(Y)
$$

Remark 4.2-1 Note that if X and Y are independent, then it can be show that they are uncorrelated, namely,

$$
\text { independent } \Rightarrow \text { uncorrelated. }
$$

However, the converse is not true in general; that is, the fact that X and Y are uncorrelated does not, in general, imply that they are independent:

$$
\text { independent } \approx \text { uncorrelated. }
$$

Definition 4.2-2 For two random variables X and Y, the correlation coefficient, denoted by $\rho_{X Y}$, is defined by

$$
\rho_{X Y}=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}=\frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}}
$$

Remark 4.2-2 It can be shown that

$$
|\rho| \leq 1 \quad \text { or } \quad-1 \leq \rho \leq 1
$$

Remark 4.2-3 Note that the correlation coefficient of X and Y is a measure of linear dependence between X and Y. The least square regression line (the line that describes linear relationship between X and Y) is given by

$$
y=\mu_{Y}+\rho_{X Y} \frac{\sigma_{Y}}{\sigma_{X}}\left(X-\mu_{X}\right)
$$

Example 4.2-1 Let X and Y have the joint pmf

$$
f(x, y)=\frac{x+y}{32}, \quad x=1,2, y=1,2,3,4 .
$$

Find the mean μ_{X} and μ_{Y}, the variances σ_{X}^{2} and σ_{Y}^{2}, the correlation coefficient ρ, and the equation of the least square regression line. Are X and Y independent?

Ans:

$$
\begin{aligned}
& \mu_{X}=25 / 16 \\
& \mu_{Y}=45 / 16 \\
& \sigma_{X}^{2}=63 / 256 \\
& \sigma_{Y}^{2}=295 / 256 \\
& \operatorname{Cov}(X, Y)=-5 / 256 \\
& \rho=-0.0367 \text { dependent. }
\end{aligned}
$$

Example 4.2-2 Let X and Y be random variables of the continuous type having the joint pdf

$$
f(x, y)=2, \quad 0 \leq y \leq x \leq 1
$$

(a) Find the marginal pdf of X and Y.
(b) Compute $\mu_{X}, \mu_{Y}, \sigma_{X}^{2}, \sigma_{Y}^{2}, \operatorname{Cov}(X, Y)$, and ρ.
(c) Determine the equation of the least square regression line.

Ans:

(a) $f_{1}(x)=2 x$ for $0 \leq x \leq 1$; $f_{2}(y)=2(1-y)$;
(b) $\mu_{X}=\mathbb{E}(X)=2 / 3$ and $\mu_{Y}=\mathbb{E}(Y)=1 / 3$.

Exercises from textbook: 4.2-1, 4.2-2, 4.2-3, 4.2-7, 4.2-9.

